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Abstract

The purpose of these notes is to review the structure theory of Iwahori-Hecke algebras,
and provide some geometric analogs of certain objects involved. For the first one we will
follow closely the beautiful expository paper [HP09], and for the second one we will draw

ideas and statements from [Zhu16].

1 Introduction

In this section, we are going to set up notation and motivate the study of Iwahori-Hecke algebras.
The setting is the following. Let G be a reductive group over a non-archimedean local field

F with valuation ring O and maximal ideal p = (π) where π is a uniformizer. Let k = O/p
be the residue field. Also let B = AN a Borel with torus A and unipotent radical N . Then
I = im−1(G(O) → G(k))(B(k)) is an Iwahori subgroup. Fix a Haar measure dg. We consider
the Iwahori-Hecke algebra H = Cc(I/G/I) with multiplication being convolution with respect
to the Haar measure.

Readers with not a lot of familiarity on reductive groups can think of a reductive group as
a group with similar structural properties to GL2(F ), which we will review below and use it as
our working example.

For GL2(F ) the Borel subgroup consists of upper triangular matrices, the torus of the
diagonal matrices, the unipotent radical of upper triangular matrices with ones on the diagonal,
and the Iwahori will be elements in

( O O
πO O)

The reason for studying this setting is the following. There is an equivalence of categories
between smooth admissible representations of G and non-degenerate modules of the convo-
lution algebra of locally constant compactly supported distributions on G, called the Hecke
algebra and denoted by H. This algebra is non-unital, but has a lot of idempotents which give
a filtration of this Hecke algebra by compact open subgroups of G. Specifically, for a compact
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open subgroup K let eK be the characteristic distribution supported in K giving it measure 1.
Then obviously e2K = eK . We define HK = eKHeK . This algebra has eK as a unit, and by a
standard exercise a module M of H gives a (possibly trivial) module eKM of HK .

The equivalence of categories mentioned above restricts to an equivalence of the category
of smooth admissible representations generated by K-fixed vectors and HK-modules.

The smaller the subgroup, the more representations it is going to see. We will study only
the cases where K is a maximal compact or Iwahori subgroup.

2 Basic structure

Let M = Cc(AON/G/I) to be the universal unramified principal series module. M is obviously
an H-module by the action given by convolution.

M will be very important to us because of the lemma.

Lemma 1. M is a free module of rank 1. In particular, H ≅ EndH(M), the isomorphism given by
h→ v1h.

Proof. We will show that the map described in the theorem, in terms of the bases Tw, vw is upper
triangular with non-zero diagonal.

Indeed, this follows from the fact that NxI∩IyI ≠ ∅ Ô⇒ x ≤ y in the Bruhat ordering.

Consider R = X∗(A) to be the group algebra of the cocharacter lattice, and W the Weyl
group. Also let H0 = Cc(I/K/I) be the finite Hecke algebra.

R,H0 are naturally subalgebras of H . We have

Lemma 2. The map R⊗H0 →H given by convolution is an isomorphism of vector spaces.

3 Bernstein presentation

The Bernstein presentation lemma is given by the following proposition.

Proposition 3. H is the algebra generated over R by the elements Tw subject to the relations

1. T 2
sa = (q − 1)Tsa + qTe.

2. Tsaπµ = πsa(µ)Tsa + (q − 1)πµ−πsa(µ)
1−π−a∨

.

The quadratic relation is given by just combinatorial considerations on double cosets, which
is how we generally compute this kind of integrals. For the intertwining relation though we will
need the so-called intertwining operators which are discussed in the next section.

For now notice that while the intertwining relation maybe appear to not be an equation in
HI , the related fractional term is actually an element of R because it is equal to a finite sum.

Nonetheless, it will be useful to us to be able to do algebraic manipulations so we let L be
the fraction field of R, HL

I = L⊗RHI , and ML = L⊗RM .
We still have that ML is a free rank one module with the same generator, and HL

I =
EndHL

I
(ML).
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Now that we have expanded our algebra and actually have denominators, one can note that
the intertwining relation for HI is equivalent to the following relation in HL

I .

(Tsa − (q − 1) 1

1 − π−a∨ )π
µ = πsa(µ) (Tsa − (q − 1) 1

1 − π−a∨ ) .

We are therefore looking for an endomorphism ML that satisfies the commutation relation
Iaπµ = πsa(µ)Ia.

We will see this in the next section.

4 Intertwiners

To show the intertwining relation, we will introduce operators Ia which have the property that
Ia ○ πµ = πsa(µ) ○ Ia, and then identify these with elements in HL

I = L ⊗R HI (notice that these
elements will have denominators in R). This will be done by computing the action of Ia on the
spherical vector.

Consider a a simple root, Ba = saBs−1a and Na the unipotent radical of Ba. Ua = (Na ∩
N)(Na ∩N) is one dimensional.

Then we have the operator
I ′a ∶ Cc(A(O)N/G/I) → C(A(O)Na/G/I) defined by

I ′a(φ)(g) = ∫
Ua
φ(uag)dua.

Notice that the integral is well-defined due to the compact support, but does not necessarily
give a function with compact support. I ′a is obviously R-linear.

We define Ia ∶ Cc(A(O)N/G) → C(A(O)N/G) by Ia(φ)(g) = I ′a(φ)(sag) where sa is a
representative in G. Now Ia has the property we want, as Ia by definition is (R,sa) semi-linear.
That is, Ia ○ πµ = πsa(µ) ○ Ia.

5 Normalized intertwiners and center

5.1 Normalized intertwiners

The intertwiners Ia are not elements of R because of the denominators 1 − π−a∨ . So it
makes sense to define Ja = (1 − π−a∨)Ia. Indeed, Ja carries M to M and is an H-module
homomorphism, therefore Ja ∈ HI . We also have the relations Jaπµ = πsa(µ)Ja and J2

a =
(1 − q−1π−a∨)(1 − q−1πa∨).

Now the elements Jw have all the properties we wanted, but their multiplication has still the
deficit that Jw1w2 = Jw1Jw2 only if l(w1w2) = l(w1) + l(w2). This has to do with the quadratic
relation. We can fix this problem and attain even more canonical intertwiners by defining the
normalized intertwiners

Kw = ( ∏
a∈Rw

1

1 − qπ−a∨ ) ⋅ Jw.

Indeed, now K2
sa = 1 and thus Kw1w2 =Kw1Kw2 for all w1,w2 ∈W .

Notice that Kw ∈HL
I but Kw ∉HI .
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5.2 Center

As we have mentioned, one of the nice properties of HI we will now explore and that greatly
simplifies its representation theory is that it has a large center. We begin with the following
lemma that follows easily from what we have done.

Lemma 4. The W -invariants of R are contained in the center, ie. RW ⊆ Z(HI).
Proof. Any element of R commutes with every other, so it is enough to prove commutation with
the elements Tsa . But indeed, by the commutation relation Jaπµ = πsa(µ)Ja we have that for any
r ∈ RW , r commutes with (1− π−a∨)Tsa . That by a simple calculation means that the bracket of
r, Tsa is annihilated by (1 − π−a∨), and since HI is a free R-module the bracket vanishes.

It will turn out that we actually have Z(HI) = RW .

Lemma 5. RW = Z(HI).
Proof. By the relations satisfied by the normalized intertwiners, we have a group homomorphism
W → (HL

I )× given by w → Kw. This extends to a homomorphism from the twisted group
algebra f ∶ L⟨W ⟩ →HL

I .
But now L⟨W ⟩ is a matrix algebra over LW , therefore it is simple and f is injective. But

now both algebras have dimension ∣W ∣2 over LW , thus f is an isomorphism.
The center of a matrix algebra are the scalar diagonal matrices, so Z(HL

I ) = LW . Intersect-
ing with R, we get Z(HI) = RW .

6 Classical Satake transform

The Satake transform gives a complete description of the spherical Hecke algebra HK . It turns
out that HK ≅ RW .

Indeed, MK is a free rank one module over HK , and we have HK ≅ EndHK(MK). MK is
also a free rank 1 R-module, and therefore for each h ∈ HK there is a unique element h∨ ∈ R
such that

h ⋆m =m ⋅ h∨.
h∨ is called the Satake transform of h. If we take m to be the spherical vector and act by
the normalized intertwiners, which preserve the spherical vector by the Gindikin-Karpelevich
formula, we find that actually h∨ ∈ RW .

Theorem 6 (Satake transform). The Satake transform is an isomorphism.

Proof. As previously, we write the change of basis matrix between the two algebras according to
properly chosen bases and use an upper triangular argument.

We choose the bases hµ = 1KπµK where µ ranges over dominant cocharacters for HK , and
sν = ∑λ∈Wν π

λ for RW .
Then the change of basis matrix has entries

cµν = δB(πν)−1/2∫
N
1KπµK(nπν)dn

This coefficient is non-negative and non-zero if and only if KπµK meets Nπν . So cµµ is
obviously nonzero and a careful analysis performed by Bruhat and Tits shows that cµν = 0
unless ν ≤ µ.
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7 Geometrization

Some of the objects defined above have geometric counterparts. We will now explore this by
considering the geometric Satake transform, and try to find counterparts of each object.

The geometric Satake transform is a categorification/geometrization of the classical one. We
first need some notation.

Let GrG be the affine Grassmannian of G and L+G be the positive loop group. Then the
geometric analog of HK is the category PL+G(GrG) of L+G-equivariant perverse sheaves over
GrG.

Indeed, sending a perverse sheaf to the euler characteristic of its hypercohomology gives a
map from PL+G(GrG) to HK , by the identification of HK with K-binvariant functions.

One equips this category with a convolution by taking fusion products of perverse sheaves.
The geometric analog of RW is the representation ring of the Langlands dual group Ĝ.

The reason for that is that characters of said representations are invariant functions under
conjugation, and we compose this observation with the identification t//W ≅ g//G. The torus
of the Langlands dual will indeed give the group algebra of the cocharacter lattice of G.

Theorem 7 (Geometric Satake transform). There is an equivalence of categories

PL+G(GrG) ≅ R(Ĝ),

that sends a fusion product of perverse sheaves to the tensor product of the corresponding representa-
tions.

We will not provide a proof of this theorem in these notes, but only mention that the
idea of the proof is that one applies the Tannakian formalism to the category PL+G(GrG)
under the symmetric monoidal functor of hypercohomology, to identify PL+G(GrG) with the
representation category of an algebraic group G̃. Using the explicit construction of that group
supplied by the formalism, we prove that the root datum of G̃ is dual to the one of G. By the
combinatorial classification of algebraic groups via their root data, we get G̃ ≅ Ĝ.

Remark 8. The geometric Satake transform implies the classical one.
Indeed, fix for technical reasons an isomorphism ι ∶ Ql → C. Taking K-groups and tensoring by

Ql, the geometric Satake equivalence gives

K(PL+G(GrG)) ⊗Ql ≅K(R(Ĝ)) ⊗Ql.

Then we use ι to get an equivalence

K(PL+G(GrG)) ⊗C ≅K(R(Ĝ)) ⊗C.

The right hand side is identified naturally with elements of RW by taking characters. The left hand
side is identified with the spherical Hecke algebra via the function-sheaf dictionary, as described at
the start of this section.
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