Geometry of p-adic representations

The Lafforgue variety and generalized discriminants

Kostas I. Psaromiligkos ${ }^{1,2}$
${ }^{1}$ University of Chicago, kostaspsa@math.uchicago.edu
${ }^{2}$ Onassis Foundation

October 2, 2022

Table of Contents

(1) Introduction

Introduction
Lafforgue variety
Trace Form and Discriminant
(2) Lafforgue variety
(3) Trace Form and Discriminant

Introduction

Background and Motivation

Let $G(F)$ be a split reductive group over a non-archimedean local field F with ring of integers \mathcal{O} and uniformizer π. Let $q=|\mathcal{O} / \pi \mathcal{O}|$ the cardinality of the residue field. Assume B is a Borel, T a split maximal torus and $W=N(T) / T$ the Weyl group. Think $G L_{2}(F), G L_{n}(F), S L_{n}(F)$, etc. and for $G L_{n}, B$ the upper triangular matrices, T the diagonal matrices, and $W=S_{n}$.

We want to study smooth irreducible representations of $G(F)$. These are all admissible by a theorem of Bernstein, and there is a finite-to-one parametrization by the Bernstein variety.

We will elevate this to an one-to-one parametrization suggested in [1], by an open subscheme of an affine scheme, which we call Lafforgue variety.

The Hecke algebra

Let I be an Iwahori subgroup ie. for $G L_{n}$,

$$
I=\left(\begin{array}{cccc}
\mathcal{O}^{\times} & \mathcal{O} & \ldots & \mathcal{O} \\
\pi \mathcal{O} & \mathcal{O}^{\times} & \ldots & \mathcal{O} \\
\vdots & \vdots & \ddots & \vdots \\
\pi \mathcal{O} & \pi \mathcal{O} & \ldots & \mathcal{O}^{\times}
\end{array}\right)
$$

We consider the Hecke algebra H of I-biinvariant locally constant compactly supported distributions on G under convolution. Smooth irreducible representations of G containing an I-fixed vector are equivalent to simple H-modules.

The center $Z(H)$ of H is Cohen-Macaulay, and H is a Cohen-Macaulay module over $Z(H)$, see [2]. Therefore, there is a regular subalgebra A of $Z(H)$ such that H is a finite locally free module over A.

The Hecke algebra

Theorem (Bernstein presentation)

Let $R=\mathbb{C}\left[X_{*}(T)\right]$ the group algebra of the cocharacter lattice. Then H is generated over R by elements $T_{w}=T_{s_{1}} \cdots T_{s_{n}}$ such that

$$
\begin{array}{r}
T_{s_{a}}^{2}=(q-1) T_{s_{a}}+q \\
T_{s_{a}} \pi=s_{a}(\pi) T_{s_{a}}+(q-1) \frac{\pi-s_{a}(\pi)}{1-\pi^{-a^{V}}} \tag{2}
\end{array}
$$

Example

Let H be the Iwahori-Hecke algebra of $G L_{2}\left(\mathbb{Q}_{p}\right)$. Then H is generated over $\mathbb{C}\left[x^{ \pm}, y^{ \pm}\right]$by $1, T_{s}$ where $T_{s}^{2}=(q-1) T_{s}+q, T_{s} x=y T_{s}+(q-1) x$.

The Hecke algebra

It can be deduced by Bernstein's presentation that there exist intertwining elements I_{w} in an extension of H such that

$$
\begin{gather*}
I_{w} \pi=w(\pi) I_{w} \tag{3}\\
I_{s}^{2}=\frac{\left(1-q \pi^{-a^{\vee}}\right)\left(1-q \pi^{a^{\vee}}\right)}{\left(1-\pi^{-a^{\vee}}\right)\left(1-\pi^{a^{\vee}}\right)}=\frac{e_{a} e_{-a}}{d_{a} d_{-a}}=c_{a} c_{-a} \tag{4}
\end{gather*}
$$

Trace Form and
Discriminant

Corollary (Satake isomorphism)

The center of H is

$$
Z(H) \cong R^{W}
$$

Lafforgue variety

Lafforgue variety

We will work in the more general context of a possibly non-commutative algebra H that is a finite free module over a commutative regular $A \subseteq Z(H)$.

There is an open dense subscheme of an affine scheme
$\mathrm{iLaf}_{H / A} \hookrightarrow \mathrm{Laf}_{H / A}=\operatorname{Spec} T_{H / A}$ parametrizing simple modules of H. It comes equipped with a finite projection $\operatorname{Laf}_{H / A} \rightarrow \operatorname{Spec} A$.

We call $T_{H / A}$ the ring of traces and it is the algebra generated by functions $f_{h}: \operatorname{iLaf}_{H / A} \rightarrow \mathbb{C}$ given by $f_{h}(V)=\operatorname{tr}_{V}(h)$. There is a natural embedding $\mathrm{iLaf}_{H / A} \hookrightarrow \operatorname{Spec} T_{H / A}$ given by the functor of points formalism. The projection sends a simple module to its central character by Schur's lemma.

Lafforgue variety for $G L_{2}$

For $G L_{2}$, the irreducible Iwahori representations (discrete series) are of three kinds.

- Induced from a generic unramified character
- Characters
- Steinberg representations.

The first one is the largest component in the diagram and the last two categories are subquotients of the first one for non-generic characters.

In the last part of the talk we will see how to compute the ramification locus, ie. the dashed curve.

Sketch of proof

We consider the following parametrizing spaces of isomorphism classes where all modules are over $H \otimes_{A} B$ and are flat as B－modules．
－ $\operatorname{Hilb}_{H / A}(B)=\left\{H \otimes_{A} B \rightarrow M\right\}$ ，
－$n \operatorname{Hilb}_{H / A}(B)=\left\{H \otimes_{A} B \rightarrow M \rightarrow N, r k(M)>\operatorname{rk}(N)\right\}$ ，
－$V_{H / A}(B)=\operatorname{Hom}_{A}(H, B)$ ，
－$G_{H / A}(B)=\left(H \otimes_{A} B\right)^{\times}$．
The first two functors are representable by proper schemes as closed subfunctors of representable functors．$V_{H / A} \cong \operatorname{Spec}\left(\operatorname{Sym}_{A}(H)\right)$ is affine and $G_{H / A}$ is a group scheme acting on all three spaces．

We have maps $n \mathrm{Hilb}_{H / A} \rightarrow \mathrm{Hilb}_{H / A}$ given by forgetting N and tr ： $\mathrm{Hilb}_{H / A} \rightarrow V_{H / A}$ assigning to a module M the trace function given by M on $\operatorname{Sym}_{A}(H)$ ．Both are $G_{H / A}$－equivariant．

Sketch of proof

This gives the sequence of $G_{H / A}$-equivariant maps between schemes over $\operatorname{Spec} A$

We set $\operatorname{Laf}_{H / A}=i m(t r)$, and $\operatorname{iLaf}_{H / A}=\operatorname{Laf}_{H / A} \backslash i m\left(t r \circ F_{N}\right)$. Since $H i l b_{H / A}$ is proper, its image is proper and since $V_{H / A}$ is affine, we get $L a f_{H / A}$ is proper and affine thus finite over $\operatorname{Spec}(A)$.

By definition, $i L a f_{H / A}$ will correspond to simple modules, and since $n H i l b_{H / A}$ is also proper $i L a f_{H / A}$ is an open subvariety, giving the result.

Trace Form and Discriminant

Trace Form

We will now try to detect the locus of reducibility．If M is a simple H－module， we recall the projection sends a module to its central character χ ．Then M is an $H_{\chi}=H \otimes_{A, \chi} \mathbb{C}$－module．

We can thus consider simple H－modules by looking at the fibers over points of $\operatorname{Spec} A$ ．Then H_{χ} is a finite dimensional k－algebra whose semisimplification can be written $H_{\chi} / J\left(H_{\chi}\right) \cong \prod_{i=1}^{n_{\chi}} M_{k_{i}}\left(D_{i}\right)$ and n_{χ} is the number of irreducible representations．

Let $\operatorname{Tr}_{H / A}: H \otimes_{A} H \rightarrow A$ be the bilinear map $\operatorname{Tr}_{H / A}\left(h_{1}, h_{2}\right)=\operatorname{tr}_{H / A}\left(h_{1} h_{2}\right)$ ． Equivalently，we can think of $\operatorname{Tr}_{H / A}$ as a map $\operatorname{Tr}_{H / A}: H \rightarrow H^{\vee}:=\operatorname{Hom}(H, A)$ ．Then，$J\left(H_{\chi}\right)=\operatorname{ker}\left(\operatorname{Tr}_{H / A, \chi}\right)$ ．

Discriminant

Suppose n_{χ} is generically 1 and $J\left(H_{\chi}\right)$ generically trivial. After a non-canonical identification $H^{\vee} \cong H$, we can take the norm (determinant) of $T r_{H / A}$, to get an element $d_{H / A} \in A$ well-defined up to A^{\times}. All these choices generate a principal

Introduction
Lafforgue variety
Trace Form and Discriminant

Lemma

Let $C / B / A$ be a tower of algebras such that A, B are commutative and regular, each extension is a finite locally free module over the previous one, and C is commutative. Then

$$
d_{C / A}=d_{B / A}^{[C: B]} \cdot N_{B / A}\left(d_{C / B}\right)
$$

This follows from the exact sequence of Kahler differentials

$$
0 \rightarrow \Omega_{B / A} \otimes_{B} C \rightarrow \Omega_{C / A} \rightarrow \Omega_{C / B} \rightarrow 0
$$

Computation for $G L_{2}$

For $G L_{2}(F)$ we can consider the basis of H over $\mathbb{C}\left[x^{ \pm}, y^{ \pm}\right]$given by
$1, x, I_{s}, x I_{s}$. Then, keeping in mind $d_{a}=1-\pi^{-a^{\vee}}=1-x y^{-1}=y^{-1}(y-x)$,

$$
\operatorname{Tr}=\left(\begin{array}{cccc}
2 & x+y & 0 & 0 \\
x+y & x^{2}+y^{2} & 0 & 0 \\
0 & 0 & 2 c_{a} c_{-a} & c_{a} c_{-a}(x+y) \\
0 & 0 & c_{a} c_{-a}(x+y) & c_{a} c_{-a}\left(x^{2}+y^{2}\right)
\end{array}\right), \operatorname{det}(\operatorname{Tr})=e_{a}^{2} e_{-a}^{2}
$$

Introduction
Lafforgue variety
Trace Form and Discriminant

Notice the block-diagonal form of the trace form in this basis. This generalizes to a Zariski-local proof of the previous lemma. We retrieve for adjoint groups [3].

Theorem (Discriminant of adjoint groups)
For G adjoint, we have

$$
d_{H / R^{W}}=\prod_{a \in \Phi}\left(e_{a} e_{-a}\right)^{|W|^{2} / 2}
$$

References I

國 L．Lafforgue，＂Le principe de fonctorialité de Langlands comme un probléme de généralisation de la loi d＇addition，＂ 2016.

Lafforgue variety
Trace Form and Discriminant

囯 J．Bernstein，R．Bezrukavnikov，and D．Kazhdan，＂Deligne－lusztig duality and wonderful compactification，＂ 2017.

围 S．Kato，＂Irreducibility of principal series representations for Hecke algebras of affine type，＂ 1982.

Acknowledgment

Thank you all for listening!

