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Background and Motivation

Let G(F ) be a split reductive group over a non-archimedean local field F with
ring of integers O and uniformizer π. Let q = |O/πO| the cardinality of the
residue field. Assume B is a Borel, T a split maximal torus and W = N(T )/T
the Weyl group. Think GL2(F ), GLn(F ), SLn(F ), etc. and for GLn, B the
upper triangular matrices, T the diagonal matrices, and W = Sn.

We want to study smooth irreducible representations of G(F ). These are all
admissible by a theorem of Bernstein, and there is a finite-to-one
parametrization by the Bernstein variety.

We will elevate this to an one-to-one parametrization suggested in [1], by an
open subscheme of an affine scheme, which we call Lafforgue variety.
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The Hecke algebra

Let I be an Iwahori subgroup ie. for GLn,

I =


O× O . . . O
πO O× . . . O

...
...

. . .
...

πO πO . . . O×


We consider the Hecke algebra H of I-biinvariant locally constant compactly
supported distributions on G under convolution. Smooth irreducible
representations of G containing an I-fixed vector are equivalent to simple
H-modules.

The center Z(H) of H is Cohen-Macaulay, and H is a Cohen-Macaulay module
over Z(H), see [2]. Therefore, there is a regular subalgebra A of Z(H) such
that H is a finite locally free module over A.
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The Hecke algebra

Theorem (Bernstein presentation)

Let R = C[X∗(T )] the group algebra of the cocharacter lattice. Then H is
generated over R by elements Tw = Ts1 · · ·Tsn such that

T 2
sa = (q − 1)Tsa + q (1)

Tsaπ = sa(π)Tsa + (q − 1)
π − sa(π)

1− π−a∨
(2)

Example

Let H be the Iwahori-Hecke algebra of GL2(Qp). Then H is generated over
C[x±, y±] by 1, Ts where T 2

s = (q − 1)Ts + q, Tsx = yTs + (q − 1)x.
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The Hecke algebra

It can be deduced by Bernstein’s presentation that there exist intertwining
elements Iw in an extension of H such that

Iwπ = w(π)Iw (3)

I2
s =

(1− qπ−a∨)(1− qπa∨)

(1− π−a∨)(1− πa∨)
=
eae−a
dad−a

= cac−a (4)

Corollary (Satake isomorphism)

The center of H is
Z(H) ∼= RW .
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Lafforgue variety

We will work in the more general context of a possibly non-commutative algebra
H that is a finite free module over a commutative regular A ⊆ Z(H).

Theorem

There is an open dense subscheme of an affine scheme
iLafH/A ↪→ LafH/A = SpecTH/A parametrizing simple modules of H. It comes
equipped with a finite projection LafH/A → SpecA.

We call TH/A the ring of traces and it is the algebra generated by functions
fh : iLafH/A → C given by fh(V ) = trV (h). There is a natural embedding
iLafH/A ↪→ SpecTH/A given by the functor of points formalism. The projection
sends a simple module to its central character by Schur’s lemma.
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Lafforgue variety for GL2

For GL2, the irreducible Iwahori
representations (discrete series) are of
three kinds.

• Induced from a generic
unramified character

• Characters

• Steinberg representations.

The first one is the largest component
in the diagram and the last two
categories are subquotients of the first
one for non-generic characters.

In the last part of the talk we will see
how to compute the ramification
locus, ie. the dashed curve.

Figure: Projection from the Lafforgue variety
to the Bernstein variety
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Sketch of proof

We consider the following parametrizing spaces of isomorphism classes where all
modules are over H ⊗A B and are flat as B-modules.

• HilbH/A(B) = {H ⊗A B �M},
• nHilbH/A(B) = {H ⊗A B �M � N, rk(M) > rk(N)},
• VH/A(B) = HomA(H,B),

• GH/A(B) = (H ⊗A B)×.

The first two functors are representable by proper schemes as closed subfunctors
of representable functors. VH/A ∼= Spec(SymA(H)) is affine and GH/A is a
group scheme acting on all three spaces.

We have maps nHilbH/A → HilbH/A given by forgetting N and
tr : HilbH/A → VH/A assigning to a module M the trace function given by M
on SymA(H). Both are GH/A-equivariant.

Kostas I. Psaromiligkos – Geometry of p-adic representations 11/18



Geometry of
p-adic

representations

Kostas I.
Psaromiligkos

Introduction

Lafforgue variety

Trace Form and
Discriminant

Sketch of proof

This gives the sequence of GH/A-equivariant maps between schemes over SpecA

nHilbH/A HilbH/A VH/A

Spec(A)

FN tr

We set LafH/A = im(tr), and iLafH/A = LafH/A \ im(tr ◦ FN ). Since HilbH/A
is proper, its image is proper and since VH/A is affine, we get LafH/A is proper
and affine thus finite over Spec(A).

By definition, iLafH/A will correspond to simple modules, and since nHilbH/A
is also proper iLafH/A is an open subvariety, giving the result.
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Trace Form and Discriminant
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Trace Form

We will now try to detect the locus of reducibility. If M is a simple H-module,
we recall the projection sends a module to its central character χ. Then M is an
Hχ = H ⊗A,χ C-module.

We can thus consider simple H-modules by looking at the fibers over points of
SpecA. Then Hχ is a finite dimensional k-algebra whose semisimplification can
be written Hχ/J(Hχ) ∼=

∏nχ
i=1Mki(Di) and nχ is the number of irreducible

representations.

Let TrH/A : H ⊗A H → A be the bilinear map TrH/A(h1, h2) = trH/A(h1h2).
Equivalently, we can think of TrH/A as a map
TrH/A : H → H∨ := Hom(H,A). Then, J(Hχ) = ker(TrH/A,χ).
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Discriminant
Suppose nχ is generically 1 and J(Hχ) generically trivial. After a non-canonical
identification H∨ ∼= H, we can take the norm (determinant) of TrH/A, to get an
element dH/A ∈ A well-defined up to A×. All these choices generate a principal
ideal which we call the discriminant dH/A of H over A in analogy with the
number ring case. Its zero set is the reducibility locus.

Lemma

Let C/B/A be a tower of algebras such that A,B are commutative and regular,
each extension is a finite locally free module over the previous one, and C is
commutative. Then

dC/A = d
[C:B]
B/A ·NB/A(dC/B)

This follows from the exact sequence of Kahler differentials

0→ ΩB/A ⊗B C → ΩC/A → ΩC/B → 0
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Computation for GL2

For GL2(F ) we can consider the basis of H over C[x±, y±] given by
1, x, Is, xIs. Then, keeping in mind da = 1− π−a∨ = 1− xy−1 = y−1(y − x),

Tr =


2 x+ y 0 0

x+ y x2 + y2 0 0
0 0 2cac−a cac−a(x+ y)
0 0 cac−a(x+ y) cac−a(x

2 + y2)

 , det(Tr) = e2
ae

2
−a

Notice the block-diagonal form of the trace form in this basis. This generalizes
to a Zariski-local proof of the previous lemma. We retrieve for adjoint groups [3].

Theorem (Discriminant of adjoint groups)

For G adjoint, we have

dH/RW =
∏
a∈Φ

(eae−a)
|W |2/2 .
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